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Parisi function for two spin glass models 

P Sibanit and J A Hertz 
Nordita, Blegdamsvej 17, 2100 Copenhagen 0, Denmark 

Received 2 November 1984 

Abstract. The probability distribution function P ( q )  for the overlap of pairs of metastable 
states and the associated Parisi order function q(x)  are calculated exactly at zero tem- 
perature for two simple models. The first is a chain in which each spin interacts randomly 
with the sum of all the spins between it and one end of the chain; the second is an 
infinite-range limit of a spin glass version of Dyson’s hierarchical model. Both have 
non-trivial overlap distributions. In the first case the problem reduces to a variable-step- 
length random-walk problem, leading to q ( x ) = s i n ( m ) .  In the second model, P ( q )  can 
be calculated by a simple recursion relation which generates devil’s staircase structure in 
q ( x ) .  If the fraction p of antiferromagnetic bonds is less than (2)-”*, the staircase is 
complete and the fractal dimensionality of the complement of the domain where q(x)  is 
flat is In 2/ ln( l /p2) .  In both models the space of metastable states can be described in 
terms of Cayley trees, which have, however, a different physical interpretation than in the 
SK model. 

1. Introduction 

Recent work on spin glasses (Parisi 1983, Young 1983, Mezard et a1 1984, Gross and 
Mezard 1984) has emphasised the importance of the probability distribution function 
for the overlap 

between a pair of metastable states whose magnetisations at site i are my and mf. 
The purpose of the present work is to study this distribution in a couple of simple (if 
artificial) models with special features which allow some exact calculations. We hope 
that the results may provide some helpful guidance in sorting out the physics of more 
complicated systems which also exhibit condensation with many metastable states. 

We use the term ‘complex condensation’ to refer to this kind of phase. We start 
from the supposition that the task of theory in this class of problem is to construct an 
appropriate statistical description of the metastable states and the relations among 
them. It is not yet known just what quantities it will be useful to know for understanding 
these qualities and their thermodynamic consequences, but it is clear from the start 
that one question we would like to have answered is ‘how much do these various states 
resemble one another?’ 

The probability distribution P (  q )  for the overlap (1.1) is designed, in part, to answer 
this question. Consider first two extreme situations: (i)  a conventional ferromagnet, 
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which has just two metastable states; and (ii) a set of N independent, two-level systems, 
with 2 N  states. In the first case P ( q )  is just a pair of S functions at fm, where m is 
the spontaneous magnetisation. In the second, P( q )  is a binomial distribution. In the 
large N limit, its width goes to zero (because we have normalised q in ( 1  . l )  to unity 
for the case of complete overlap), i.e. the different states have almost nothing in 
common with each other. 

An intermediate case can be seen in a toy model studied by Palmer and Hertz 
(1983). It is like the independent, two-level-system case except that the different 
two-level systems represent ferromagnetic clusters of spins of widely differing sizes. 
This is shown schematically in figure 1. There are N spins in all: N / 2  of them are in 
one cluster, N / 4  in the next, and so on. There are log2N rigid clusters in all. The 
metastable states can be specified by a list 

a = (ml ,  mz,. . .) mi = =tl. (1 .2)  

Figure 1. Visualisation of the toy model of Palmer and Hertz. The boxes represent 
independent clusters of spins of size N / 2 ,  N/4, etc, where N is the total size of the system. 

The magnetisation of state (Y is then 

M = N m92-' 
I 

and the overlap between two states a and p is 
qa@ = C m;2-'. 

I 

( 1 . 3 )  

Now consider the quantity r a p  = f ( qap  + l ) ,  which lies between 0 and 1. From (1.4) 
we can write 

rap = 2 d902-' (1.5) 
I 

where dYp is randomly 0 or 1. But (1.5) is just the expansion of a number whose 
binary representation is 0. d l d 2 d 3 d 4 .  . . . Thus r a p  is uniformly distributed between 0 
and 1, and consequently P (  q )  is uniform on the interval from - 1 to + 1. 

These examples illustrate what P ( q )  tells us about the metastable states. In the 
kinds of situations we are used to dealing with in statistical mechanics, P ( q )  turned 
out to have a trivial structure. It was necessary to have a whole spectrum of cluster 
sizes in order to get something other than one or two S functions. 
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What else should we want to know about the metastable states besides the informa- 
tion contained in P ( q ) ?  Mezard and coworkers suggested that further interesting and 
useful information about the relation between the states could be found by examining 
higher-order, joint-probability distributions, such as that of the set of three overlaps 
qap, q p y  and qya between three states a, p and y. They found in the SK model 
(Sherrington and Kirkpartick 1975), using the Parisi replica ansatz (Parisi 1979, 1980) 
that the form of this joint distribution suggested an ultrametric topology (i.e. a tree 
structure) in the space of states. 

In this work we study two models which are much simpler than the SK model. 
They are so simple that, at least at zero temperature, the metastable states can be 
identified and classified quite directly for arbitrary bond configurations. This gives US 
the possibility of a more direct insight into the meaning of statistical characterisations 
of the states (such as P( q )  and the joint distributions mentioned above) than is possible 
in the SK model. Nevertheless, the models are not so simple as to be trivial in the 
sense that the first two examples we saw above were. We will find non-trivial structure 
in P ( q )  in both cases. Our motivation in doing this is like that of Gross and Mezard, 
who have studied Derrida's random-energy model (1980, 1981) in a similar spirit. 

Our first model is a one-dimensional one. In order to have non-trivial statistics, 
we need long-range interactions, which we introduce in the following fashion. We 
start constructing the chain from, say, the left end. Each spin is then taken to interact, 
via a bond of random sign, with the sum of all the spins to its left. In this way, 
interactions with longer and longer ranges are built up, up to the length of the chain. 
We will see that in a sense the range of this model is barely long enough to produce 
a non-trivial spin-glass state. The calculation of P ( q )  turns out to reduce to a classic 
problem in random walk theory, with a simple solution. 

Our second model is a special case of a class of models introduced for the 
ferromagnetic case by Dyson (1969, 1971). It is pictured in figure 2. We take a set 
of N = 2 L  spins S, arranged as shown in a line. We introduce random interactions 
*.lo between S, and S2, between S3 and S,, and so on, as shown in the figure. (There 
are 2L-' of these bonds.) We then add interactions between the sums of adjacent pairs, 
for example 

iJO2-*(S, + S,)( S, + S,) (1.6) 

8 ,  52 Sj 5' 

I 

Figure 2. The Dyson model. The dots at zero level are actual spins, and the variables SIP 
at the higher levels are block spin variables defined in a recursive manner by S,p = 
S,-lp+SI-,,2p-I. In our version of the model the coupling constants Jlp are random 
variables. 
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and so forth (2L-2 such bonds). The parameter regulates how fast the interactions fall 
off with distance along the chain. The next level interactions have the form 

*J02-2A (SI + Sz + S, + S,)( S5 + S,+ s, + S, )  (1.7) 

and so on. At the Ith level we add interactions of magnitude J02-A’ coupling pair of 
blocks of 2’ spins, until at level 1 = L -  1 there is just one bond between the left- and 
right-halves of the system. Dyson introduced this kind of model as an approximation 
to one-dimensional ferromagnets with FA power law interaction, on the argument that 
the long-range part of the forces could be approximated by interactions between large 
blocks of spins. For T = 0 and small A the metastable states are readily identified and 
we are able to calculate P ( q )  by iterating a simple functional relation. 

The remainder of this paper comprises three sections, one for each model, followed 
by general comments and conclusions. A brief account of part of this work has been 
published in the proceedings of the Nobel symposium held at Graftavallen, Sweden, 
June 1984 (Hertz and Sibani 1985). 

2. The tapeworm model 

As mentioned in the introduction the tapeworm model is a one-dimensional chain of 
spins, each interacting in a random fashion with the sum of the previous ones. The 
form of the interaction is chosen in order to obtain maximal mathematical simplicity, 
admittedly at the price of introducing some unphysical features. Specifically we take 
the energy of the nth spin to be 

where S is the Kronecker delta, sgn is the sign function and J, are independent stochastic 
variables taking the values + 1 (antiferromagnetic bond) or - 1 (ferromagnetic) with 
probabilities p and ( 1  - p )  respectively. Each spin interacts with an ‘effective field’, 
stemming from the rest of the system, which is crudely represented by the sign function. 
If this field happens to vanish at the nth site, the last term in (2.1) ensures that the 
nth spin has zero energy, irrespective of its orientation. 

Some insight in the consequences of (2.1) can be gained by considering the two 
extreme cases in which the bonds are (i) all ferromagnetic and (ii) all antiferromagnetic. 
In the former case the system becomes completely ordered at T = 0. The order survives 
also at T # 0, since small fluctuations do not change the local field felt by a given spin 
at all. In the latter case an n-spin system splits into n/2 clusters, each containing two 
spins of opposite signs and each free to rotate with respect to the other with no change 
in energy. Exactly the same behaviour is present in the random Dyson model. 

Returning to (2.1) we note that the ground state of the system is found by satisfying 
each bond. Then all E,  vanish separately and the ground-state energy is zero. In spite 
of the lack of frustration there are (lots of) degeneracies in the system. If Z:-’u, 
vanishes for the first time at n = no-  1, the noth spin has two degenerate orientations, 
each corresponding to a different macroscopic arrangement of the rest of the chain. 
Furthermore the noth and the first spin are equivalent and therefore the first bifurcation 
at no is followed by an infinite series of bifurcations at n , ,  n2,. . . , nk. This situation 
is described graphically in figure 3 by a Cayley tree. The possible states of a system 
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Figure 3. The Cayley tree of the tapeworm model. The height of the tree is the number 
of particles in the system, and each path in the tree corresponds to a clustering state of 
the system. The X, is the number of spins in the kth cluster of the chain. 

with n spins are the end points of a tree of height n and 

is the height of the kth section of the tree. 
The overlap between any two different states can be calculated by multiplying two 

paths in the tree section by section and by scaling by the total number of spins. Since 
the product of two sections is plus or minus the length of the section we are led to 
consider the distribution of the stochastic variable 

(2.3) 

in the limit k + CO of an infinitely high tree. In (2.3) the Ai’s are symmetrically distributed, 
independent random variables, each with range + l .  Taking a given realisation of the 
A corresponds to choosing two definite pure states of the system. xk are functions of 
the couplings J1, J2,. . . , Jk. Since we do not know what the couplings are, we consider 
xk as stochastic variables which, as we shall see in short, can be identified with the 
times of return to the origin in a nearest-neighbour one-dimensional random walk. 
Finally, the Parisi function for the tapeworm at T = 0, q ( x ) ,  is the inverse of 

x ( q )  = I,‘ PQ(z) dz (2.4) 

where Po is the density of Qk in the limit k + 00. 

It is convenient to distinguish in the following treatment between two different 
cases: (i)  p = 1/2, i.e. ferromagnetic and antiferromagnetic bonds are equally probable; 
and (ii) p f 1/2. Considering the first case, when p = 112 any spin has equal probability 
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of pointing in any direction. We can imagine that the spins are added to the system 
at equal time intervals and visualise the spin sum vi as the position at 'time' k of 
a random walker which started at the origin and moves by nearest-neighbour hops in 
a one-dimensional lattice, with equal probability for left and right hops. In this term 
Xk is simply the time (number of steps) elapsed between the k - 1 and the kth returns 
to the origin. Referring back to (2.3), we can also give the two possible values of A,  
the following random walk interpretation. A ,  = + I  (-1) if the walker steps into the 
positive (negative) axis after the ( i -  1)th return. In these terms + ( - ) X ,  is the event; 
the walker spends time X ,  on the positive (negative) axis after the ( i  - 1)th return. 
Recalling that the denominator of (2.3) is the duration of the walk, it follows that 

Qk = P k -  Nk = 2Pk- 1 (2 .5 )  

where P k  and Nk are the fractions of time which are spent on the positive and negative 
axis in a k-step random walk. It is well known from the theory of probability (e.g. 
Feller 1970, vol 1 )  that the distribution of Qk in the limit k + CO is given by the so-called 
sin-' law, which simply means that 

P Q ( q ) = ( l / r ) ( l  - q * ) - l ' 2  (2.6) 

and 

x(q)=( l / . r r )  sin-l(q). 

q ( x )  =sin( r x )  

Hence the Parisi function has the remarkably simple form 

1x1 < 4. 
Motivated by a recent publication of Mezard et a1 (1984) we now proceed to calculate 

the density P(q , ,  q2, q 3 )  of the overlaps between the three possible pairs formed out 
of three randomly chosen states a, p and y. The above authors investigated the metric 
properties of the state space of the SK model and found that at least two of the overlaps 
quo, quy  and q p y  are equal while the third is smaller or equal to the two others, i.e. 

P(q1, q2r q 3 )  =40(4, - 92)6(43 - q2)p(ql)p(q2)+cYclic permutations 

Mezard et a1 also show that as a consequence of (2.9) the states of the SK model 
can be grouped in disjoint clusters, such that all the states in a cluster have overlap 
greater than a given q,. Choosing a set { q l ,  q,, . . .} with qi > qiCl gives a hierarchical 
structure of clusters such that clusters can be represented by a Cayley tree. This seems 
somehow analogous to the Cayley tree structure of the tapeworm; however, it must 
be stressed that the two concepts are quite distinct. 

A cluster of the tapeworm can be conveniently defined as a string of spins which 
can be flipped without changing the energy. Defining the distance between two states 
as d = m - n, where m is the total number of bifurcations and n is the number of 
sections the two states have in common, we find as in the SK model a hierarchy of 
clusters within clusters, where all the spins belonging to a cluster have distances less 
than or equal to d. In contrast with the SK model this hierarchy is finite, since the 
sections of the tapeworm, XI, X,,  . . . cannot be further subdivided. The main difference 
between the SK model and ours comes, however, from our definition of distance, which 
is related but by no means identical to that of overlap. In particular given any three 
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states a, p and y at least two of the distances de@, d a y  and d p y  are equal, but the 
statement does not hold for the corresponding overlaps, and (2.9) does not apply. 

In order to clarify this point it is useful to consider the overlap 

(2.10) 

between pairs of known separation d, in a tapeworm with m sections. It consists of 
a sure part X I  . . . X,-d, which is the same for all the pairs separated by d, and a part 
which fluctuates from pair to pair, according to the realisation of the A's. If d is small 
the overlaps of different pairs with the same d will be very similar, while for large d 
they will be uncorrelated. The key to understanding the properties of P(q1, 4 2 ,  43) lies 
therefore in the answer to the following question. Let ( d , ,  d2)  be the two distances 
associated in the usual way with three states a, p and y, and assume d l  2 d2. What is 
the joint density Pd,,d,(nl, n2)? As explained in detail in appendix 1, we find 

(a)( t)" - n, - "2 n ,  > O,O< n 2 <  n ,  
pd,,d2(nl, n2) = ( $ ) ( f ) 2 m - n '  n ,  > 0, n2 = 0 1: an, ,d t )" '  n ,  = O .  (2.1 1)  

Clearly, in the thermodynamic limit m + 00, a fraction of the total mass of P which is 
arbitrarily close to one is distributed in a finite region of the ( n , ,  n 2 )  plane close to m, 
i.e. the sure part of the overlap (2.10) only contains a finite number of terms which 
asymptotically do not contribute to the sum. This means that the correlations in the 
overlaps qua, qey,  q p y  induced by the fact that two of the distances d a p ,  d a y  and d p y  
are equal, vanish in the thermodynamic limit, i.e. 

P ( q , ,  42,431 = P ( q J P ( 4 2 ) P ( q d  (2.12) 

for an infinite system. 
We have hitherto considered the case in which ferromagnetic and antiferromagnetic 

bonds are equally probable, i.e. p = f. If p # f the treatment must be slightly modified 
and the result is also rather different. As a preliminary consideration we note that the 
random-walk (or coin-tossing) analogy must be changed since the hopping probabilities 
now depend on whether the walker is on the right-half or left-half line (if p > &  i.e. 
antiferromagnetic bonds are most probable, the walker will be biased towards the 
origin). The difficulty is, however, only a matter of notation. Since we are interested 
in return times, we can limit our discussion to a random walk on the positive axis 
which terminates when the walker returns to the origin. In terms of games this is the 
classical ruin problem for a player which has an infinitely rich adversary. 

Let us first consider the case p <f. This biases the walk towards infinity. As is well 
known in such a biased random walk there is a non-zero probability of never returning 
to the origin, which is therefore only visited a finite number of times with probability 
one. Hence the Cayley tree has only a finite number of nodes, say k nodes, and its 
kth branch X k  grows without bound in the thermodynamic limit. A glance at (2.3) 
shows that the overlap will eventually be dominated by this one term. Hence Q = *I  
with equal probability and 

~ o ( d = f ( a ( q +  1)+8(4 -  1)).  (2.13) 
If p > $  the probability of return to the origin is enhanced. The distribution of 

return times is well known (Feller 1970), but we do not need its explicit form. The 
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important feature is that, in contrast with the p = i case, this distribution has a finite mean 

(2.14) 

By definition, E is the expectation of Xi for all i. It follows from a symmetry 
consideration that the variables AiXi all have zero expectation. Rewriting Qk as 

E = ( 2 p  - l)-'. 

(2.15) 

we note that (Feller 1970, vol 2, p234) by the law of large numbers the numerator 
converges to zero and the denominator to E. It follows that, in the thermodynamic limit 

P d q )  = S ( q )  (2.16) 

and thus the point p =i  is a kind of critical point separating phases with the trivial 
behaviour of P (  q )  which characterise high and low temperature phases of conventional 
broken symmetry systems. 

3. The random Dyson model 

Our second model is somewhat more complex than the first one and has a correspond- 
ingly more complex structure in its P (  q ) .  The block spin variables illustrated in figure 
2 are formally defined in a recursive manner by 

SI$ = SI-,,,, + sI-1.2p-l  (3.1) 

with So,p = S, the actual spins. Then the Hamiltonian for a system of 2 N  spins is 

= - x- - c JlpSI.2pS1,2p-l 
f = O  p = l  

(3.2) 

where Jlp are independent random variables taking on the values 

Jlp = i. J02-'" (3.3) 

with probabilities 1 - p  (+case, ferromagnetic bond) and p (-case, antiferromagnetic 
bond) respectively. As we mentioned, Dyson introduced the ferromagnetic version of 
this model to study one-dimensional ferromagnets with power-law forces (Dyson 1969). 
However, as noted by Baker (1972), it can also be used to model higher-dimensional 
systems. In general a model with J I a 2 - A '  simulates FdA forces in d dimensions. The 
class of Dyson models should not be confused with another set of systems which are 
also often called hierarchical: the so-called Berker lattices. Spin glass behaviour has 
been studied in this kind of system (McKay et a1 1982, 1984) from a somewhat different 
point of view. The present work complements that of McKay et a1 in that we are 
looking at long-range models and a mean-field limit, while they study short-range 
models and do not use such concepts as a mean-field order parameter. 

As a model of a real spin glass, ours is obviously artificial, although perhaps hardly 
more so than the SK model. However, blocks of metal with magnetic impurities are 
not the only systems where spin glass theoretical concepts are relevant. There is a 
growing interest in the statistical mechanics of pseudospin models of information 
processing structures, in both computer, science applications (Hubermann and Hogg 
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1984) and  neurobiology (Anderson 1972, Hopfield 1982). While the Dyson hierarchical 
model is clearly a bad description of RKKY coupled moments in a metal, it is not such 
a bad starting point for describing realisable connections of logical elements or neurons. 
We also note that this model is not as fragile as the tapeworm model of the preceding 
section, in that there is nothing special about the case p =i. We will find non-trivial 
behaviour (at  least in the mean-field limit) except for the purely antiferromagnetic and  
purely ferromagnetic limits. We note further that there is no symmetry between 
ferromagnetic and antiferromagnetic interactions, i.e. the model is not invariant under 
p e  ( 1  - p ) ,  but quite the opposite; the purely antiferromagnetic limit turns out to have 
2N-I independent two-spin clusters, while the purely ferromagnetic limit has only the 
two states of a conventional ferromagnet. This difference comes about because the 
block variables (3.1) are always total spins and never a staggered-spin-like combination. 
A truly symmetric model would have differences equally often as sums on the right-hand 
side of (3.1). Therefore we should not necessarily expect the kind of close correspon- 
dence between our model and a one-dimensional long-range spin glass (Kotliar et a1 
1983) that is found in the ferromagnetic case between Dyson’s model and the r-’ chain. 

We are interested in identifying the metastable states in the limit T+O, and by 
analogy with the tapeworm (or any system with a non-trivial Parisi function) we expect 
a large degenerate set of these which we refer to as the ground-state manifold. We 
can get a clue about the relevant energetics by examining the smallest non-trivial 
example of our model, one with only four spins and three bonds, Jol, Jo2 and JI1. (See 
the lower left corner of figure 2.) There are eight possible combinations for the signs 
of the three bonds. However, the sign of J , ,  is irrelevant to the energy; what matters, 
as we shall see in a moment, is whether this top bond should be satisfied, possibly at 
the expense of breaking one of the lower bonds. So we have four combinations left, 
of which only three are distinct: Jol and Joz both positive, both negative or  of different 
signs. Let us find the lowest energy configurations for all the three cases. 

( 1 )  Jol = Joz = +Jo. Here there is no competition; all bonds are satisfied by taking 
S ,  = Sz and S3 = S4 and letting the relative sign of the two pairs be fixed by that of J1 ,. 

( 2 )  Jol = -JO2. Here we have the possibility of frustration; if we satisfy the lower- 
level bond, the energy is -2J0. (The upper bond does not contribute, since one of the 
blocks is zero.) If we break the antiferromagnetic lower-level bond and  satisfy J1, 
instead, the energy is -4JJA. Which of the two two possibilities has the lowest energy 
clearly depends on A ;  for A < 1 we satisfy the higher-level bond and for A > 1 this 
bond is irrelevant. 

(3) Jol = Jo2 = -Jo. Here J , ,  is competing with both the Joj.  If we satisfy the Jo, we 
have E = -2J0, while if we satisfy the upper-level bond, E = 2J0 - 4J02-’. So, for any 
A > 0, the lower-level bonds win out. 

It is then tempting to hope that this procedure may be repeated at the next level, 
where we combine two systems like those we have just examined and  couple their 
total spins by a J21 and so on. Then we would say that for O <  A < 1, the two blocks 
would be combined into one rigid cluster with probability 1 - p 2  and would remain 
independent of each other with probability p z .  This simple situation would then allow 
us to construct a recursion relation for P ( q ) ,  the probability density of overlap between 
two states. It is, however, not a simple matter to prove that this procedure actually 
yields the ground state of the system. We have postponed the discussion to appendix 
2, where we show that for small A the system is actually ‘almost’ completely polarised 
in its ground state, even in this very unfavourable and unprobable bond configuration. 
Small A is a mean-field limit, but we cannot take A exactly zero, since then, as we saw 
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in case (3) above, the states obtained by always satisfying the top bond are at least 
degenerate with those in which the lower bonds are satisfied. 

In a brief account of part of this work published elsewhere (Hertz and Sibani 1985), 
it was stated that our recursion procedure gave the exact ground states for all A less 
than a finite A,. This is incorrect. It is true that the states given by our algorithm are 
lower in energy than the unpolarised state (antiferromagnetic pairs) for A <A, ,  but 
they are not quite the ground states. What we show in appendix 2 is that they are 
arbitrarily close to the true ground states for sufficiently small A. 

Having established a procedure for constructing the ground-state manifold, we can 
now easily find a simple recursion relation for P l ( q ) ,  the overlap probability density 
in a 1-level system (see figure 2).  If we combine two blocks each of 2’ spins the only 
bonds that matter are the top ones within each of the blocks; if they are both negative 
(probabilty p 2 )  there is no correlation induced between spins by joining the blocks 
together; otherwise (probability 1 - p 2 )  they form a new rigid block with no internal 
free clusters. In the former case the stochastic variable representing the overlap at the 
I +  1 level is just the arithmetic mean of the two independent overlaps at level I ,  and 
its density is just given by a scaled convolution of the level 1 densities. In  the latter 
the overlap at level I is fixed to be * l  with equal probability. Weighting these two 
cases with the appropriate probabilities we obtain 

This is our fundamental result. In terms of characteristic functions 

~ ( k )  = 5 ’  dq exp(ikq)Pl(q) 
-I 

(3.5) 

we have a simple functional recursion relation: 

A + l ( k )  = ( 1  - p 2 )  cos k+p2f3k/2) .  (3.6) 

These equations must be iterated with the initial condition 

P d q )  = ;( 6 ( q  + 1 ) + S ( q  - 1 ) ) .  (3.7) 

It is not difficult to see that with this initial condition the limit of P f ( q )  for I+m,  

p c o ( q ) = f a ( 6 ( q + l ) + S ( q - 1 ) ) + p ( q )  (3.8) 
where p ( * l )  = 0, and substituting in (3.4) we obtain a simple quadratic equation for 
a with solution 

P , ( q ) ,  will also have a piece proportional to (3.7). Indeed, by writing the ansatz 

1 - [ 1 - 2p2( 1 -p2)]1’2 

P 2  a =  (3.9) 

For p = f ,  for example, a = 0.838, i.e. most of the mass of P (  q )  is in the spikes at q = * 1. 
We have carried out the iteration of the recursion relation (3.4) on the computer. 

The results are shown for several values of p in figure 4. Instead of P ( q )  we have 
plotted the Parisi function q(x)  (defined by P ( q )  = dx/dq).  Thus the widths of the 
plateaux in q ( x )  correspond to the heights of the spikes in P ( q ) .  The broadest plateaux 
are observed for q = * I  (these are not shown in fuil in figure 2), and for small p the 
widths of successively smaller plateaux falls off more rapidly for small than for large 
P. 
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Figure 4. The Parisi function q ( x )  of the random Dyson model is a devil's staircase. Here 
we show the staircase for values of p z  of ( a )  0.45, ( b )  0.35 and ( c )  0.25, where p is the 
probability that a given bond is antiferromagnetic. Note that the scales of the figures are 
at ratios 3 : 2 :  1 .  

The Parisi function clearly has a devil's staircase structure, since P,(q)  has an 
infinite number of finite spikes. Is the staircase complete? This is the same as asking 
whether all the mass of P m ( q )  is in the spikes. We can answer the question in the 



1266 P Sibani and J A Hertz 

following way. Each iteration of the recursion relation produces a whole set of new 
spikes as well as adjusting the heights of the spikes already present. The number of 
spikes is the old number minus one, i.e. for large 1 the number of spikes is doubled 
at each iteration. If the total mass of the new spikes produced by the fth iteration 
goes to zero as 1 - 0 0 ,  all the mass of P,(q) is in a finite number of spikes and  the 
devil's staircase is complete. 

In order to compute this quantity it is convenient to look at how the set of new 
spikes is generated by (3.4) without the rescaling which puts the new q in the interval 
( -  1, 1). We then have 

(3.10) 

where the S are now Kronecker symbols. P f ( q )  is non-zero on the even integers between 
-2' and 2'. Now the key to the problem is in recognising that, if the spikes are numbered 
from the left (the left most spike at -2' thus has number zero), the last set of spikes 
added in the iteration has an  odd number, and P f ( q )  can naturally be divided into an  
even and  an  odd part. Thus, going back to the characteristic functions (3.5) we define 
C(k) a n d f ; (  k )  as the Fourier transform of the even and odd parts of P f ( q )  respectively. 
Since two even or two odd numbers add up  to an  even number, and an  even and an  
odd add up  to an odd number, we have 

(3.12) 

(normalisation), we have a simple recursion relation for fT(0)  = w!, the total weight in 
the odd (last generation) spikes: 

W'+I = 2p2wr( 1 - Wr). (3.13) 

We see immediately that for p 2 s f  the stable fix point is w,=O, i.e. asymptotically 
zero weight goes into the new spikes. In terms of q ( x ) ,  the plateaux cover all x in the 
interval [ - f, $1, except for a set of zero measure; the devil's staircase is complete. For 
p ' > ; ,  w, is non-zero, the staircase is incomplete and q ( x )  must develop some 
continuous pieces. Since iterating this continuous piece does not give rise to new 
spikes, it is straightorward to see by integrating (3.10) that the total weight of the 
spikes of P,( q )  is, for p 2  > f 

m, = ( 1  - p 2 ) / p 2  (3.14) 

which is a smoothly decreasing function of p 2 .  
Returning to p 2 < f ,  where the staircase is complete, we can then use (3.13) to 

calculate the fractal dimensionality of the set of x for which q ( x )  does not lie in a 
plateau. Following Jensen et af (1983) we define S( r l )  as the fraction of the interval 
occupied by plateaux of width " r ,  and define the fractal dimensionality D of our set 
as 

(3.15) 



Parisi function for two spin glass models 1267 

From (3.13) we have 

1 - S ( r l )  = wI - ( 2 p 2 ) ’  (3.16) 

for 1 + CO, while typically 

r, = w1/2‘-’ (3.17) 

since the weight is distributed among 2‘-’ spikes. Thus 

D =[log,( l / p 2 ) ] - ’ .  (3.18) 

D is equal to f for equal concentrations of ferromagnetic and antiferromagnetic bonds, 
increases as p increases and goes to unity as p + (2)-”,, signalling that the devil’s 
staircase is no longer complete for larger p .  

By analogy to what we already have done for the tapeworm, we now want to 
establish the metric structure of the space of states of the random Dyson model. 
Consider therefore a system composed of 2 N  spins. According to the preceding 
discussion the following possibilities arise: either the whole system is a rigid ferromag- 
netic cluster, with two possible states, or it is subdivided into two independent sub- 
clusters. The argument can be repeated for each of the subclusters and we end up 
with either one or two or three o r . ,  , 2 N - 1  independent rigid clusters. This can again 
be represented in terms of a Cayley tree: at each doubling of the number of spins the 
system can: (i) bifurcate or in general multifurcate according to how many states the 
neighbour block possesses; or (ii) return to or remain in a configuration with only two 
metastable states. 

This corresponds to the two terms in the recursion relation (3.4). Should the system 
return from a configuration with many states to a two-state configuration, we simply 
replace the branches which meet again by a straight line, since this does not make any 
difference to the further evolution of the system as the size grows. 

In conclusion we get again an ultrametric topology on the space of the pure states, 
with a distance defined in the same manner as in the tapeworm. There is however an 
important difference in the structure of P ( q , ,  q2, q3). In the tapeworm this function 
factorises into the product P( q l ) P (  q 2 ) P (  q3) because the overwhelming majority of the 
states are very far apart in the thermodynamic limit. In the Dyson model on the 
contrary, there is a finite probability, for any size of the system, of having just two 
states related by an overall spin flip, which leads to strong correlations between the 
overlaps of any group of three states. Indeed the two possible ways of combining two 
blocks according to the signs of the bonds give 

P,+ , (q , ,  9 2 ,  q3) 

= ( 1  -p2)Po(q1, q 2 ,  q3) 
I 

+8p2 5, [:, I-, Pl(2ql-q:,2q,-q;,2q,-q:)P,(q:, q;, 4:)  (3.19) 

where 

(3.20) 
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is the joint overlap density for a system with only two states and also the initial 
condition of the recursion. 

Rather than discussing in detail the properties of (3.19), we show by a simple 
argument that its solution cannot have the same form as the P ( q l ,  q2, q3)  given by 
Mezard et a1 for the SK model. Consider the case in which the system contains two 
independent sub-blocks, which are both rigid clusters. This happens with finite proba- 
bility in a system of any size. Since the sub-blocks are rigid, each of them can be 
conveniently represented by just one spin, notwithstanding the fact that it has zero 
magnetisation. We thus have four states, which we label: 

CY =t t  P =?.1 Y = J t  6 = J.J.. (3.21) 

Clearly qop = quy = 0 and qpv = - 1, which is not compatible with (2.9), because the 
two overlaps which are equal are greater than (rather than smaller than) the third. 

4. Conclusion 

We have considered in this paper two simple models of spin systems with random 
interactions and have calculated exactly their zero-temperature Parisi functions. The 
models look very different: the first, which we have called the ‘tapeworm’, is simply 
a one-dimensional string of spins, each interacting with the sum of the previous ones. 
We find that the spins can be grouped into connected clusters; any cluster can be 
flipped independently without changing the energy of the system. In other words, 
each cluster corresponds to a local symmetry operation on the model. The tapeworm 
has an infinite number of clusters of finite size. 

The second model is a random Dyson model, which also has clusters, defined as 
above. The distribution of cluster sizes differs, however, in the two cases: in the Dyson 
model any finite group of spins finally ends in one of the possible ferromagnetic 
configurations and one could say that, in the thermodynamic limit, only clusters of 
infinite size survive with non-zero probability. In any case, for a finite, arbitrarily large 
number of spins the state space of both models has an ultrametric topology. However, 
the distance between two states is defined in a different way than in the SK model. 

There is one more similarity between our two models; they have exactly the same 
ground-state configurations if all the bonds are ferromagnetic or antiferromagnetic, as 
already mentioned in § 2. An important difference is that the Parisi function of the 
tapeworm is non-trivial only if the ferromagnetic and antiferromagnetic bonds are 
exactly equiprobable, while this is not the case for the Dyson model. 

The non-triviality of the Parisi function requires two conditions to be satisfied. The 
first is the obvious one that the system should have many pure states. The existence 
of many states is, however not, sufficient to guarantee a non-trivial overlap density: 
one must also require that the cluster-size distribution is very broad. Specifically it 
must not have a finite mean. Examples of this fact are the set of N independent 
two-level systems considered in the introduction, and the tapeworm model in the case 
of prevalence of antiferromagnetic bonds. The clusters of the Dyson model and of 
the toy model of the introduction have clearly no finite mean size, and the same is 
true for the tapeworm whenp = i, and all these models have a non-trivial Parisi function. 
Apart from these examples, the fact that a distribution of cluster sizes with a finite 
mean yields a trivial Parisi function follows directly from the law of large numbers, 
as is apparent from the arguments leading to (2.16). 
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We find it satisfying to have established a connection between old results from 
theory of random walks and  new concepts like the Parisi function, and to find such 
features as fractal structure with variable Hausdorff dimensionality for the random 
Dyson model. It comes about because of both its hierarchical structure (which is what 
allows the recursive solution) and the discreteness of the random bonds. These are 
very special features of this particular model. However, we have seen that two seemingly 
different systems look rather similar if one considers the space of their pure states. 
This is also an  a posteriori justification for considering simple examples as we have 
done here. It cannot be excluded that some of their features could be found in more 
complex models which are closer to the real world. 
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Appendix 1 

Consider a tapeworm with m sections and  2"' states. Take three states a, /3 and y at 
random and ask for the smallest fraction of the system which contains them all. With 
probability $ this is the whole system, and  with probability half of the system. In 
general if we subdivide the states into 2k  groups of 2"-k contiguous element each, the 
probability that a, /3 and y all fall into any of these groups is ($)k, which is also the 
probability that 

d l = m a x ( d u ~ , d a y , d ~ m ) ~ m - k =  n1. (Al.1) 

It follows that 

(A1.2) 

Now let d ,  = n, ,  i.e. all the states are in a subgroup of 2"1 elements and precisely two 
of them are in a subgroup of size 2"l-I. Repeating the previous argument they are 
both in a subgroup of size 2"1-'-"2 with probability 

Equation (2.11) follows now from (A1.2) and  (A1.3). 

Appendix 2 

(Al.3) 

In this appendix we justify by a detailed analysis the recursive method of constructing 
the ground state which is the basis ofequation (3.4). The object of the  present discussion 
is again the extreme case in which all the bonds in a 2N spin block are negative, except 
for two of the three top bonds. We find that, for small A, the block containing the + 
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bond is completely polarised and the other ‘almost’ completely polarised in the ground 
state of the system. Complete polarisation is only attained in the limit A + 0. However, 
the recursion (3.4) can be used for small non-zero A, since the error in the overlap 
turns out to be negligible. 

Unless otherwise stated, we shall use the word ‘system’ for a system with the above 
mentioned spin configuration and, for the sake of concreteness, place one of the two 
positive bonds in the right sub-block. 

As a first step towards the construction of the ground state, we ask for the spin 
configuration yielding the lowest possible energy in a system in which all the bonds 
are antiferromagnetic and in which the total polarisation S , ,  is kept fixed. The answer 
is given in the next lemma. 

Lemma 1 .  The lowest energy configuration for the above system is obtained by 
recursively applying the following prescription for adding two units of polarisation, 
i.e. for the change S , ,  + S , ,  + 2. Divide the whole system into two sub-blocks. If 
these are equally polarised, choose one of them at random, otherwise take the less 
polarised sub-block, and within this sub-block repeat the process described above 
(subdivision and choice) again and again, until the chosen block for the first time has 
zero polarisation. Choose then a spin pair at random within the block and polarise 
it. As a corollary we note that any two blocks of the same size have polarisations 
differing by at most two units. 

For the sake of continuity of the exposition we postpone the proof to the end of 
the appendix and proceed to apply the lemma. We also note that the prescription of 
the lemma also yields the lowest energy when the top bond of the block is positive 
rather than negative. 

The main purpose of our discussion is to find the ground state of the system with 
the ‘test’ bond configuration. In this configuration we get a negative contribution to 
the energy from the two ferromagnetic top bonds, and a positive contribution from 
all the other broken bonds. A moment of reflection shows that in the ground state 
SN-I,I G SN-I,2. Furthermore, within each sub-block, the spin configuration must be 
according to lemma 1, since otherwise the positive part of the energy could be lowered 
by reshuffling the spins. We therefore search for the ground state among the metastable 
states obeying the two restrictions above, which we shall call ‘low energy’ metastable 
states. Fortunately there are only few of these, as shown by the next lemma. 

Lemma 2. Let 

2”(N -1) ( 1  + 2-”)  - 2“+’ 
2”l 

C(A) = A <;. 

There are no low energy metastable states for 

(A2.1) 

(A2.2) 

unless 

SN-1.2 = 2 N-I and SN-I,~ 3 (21-A -1)(2N-1 - C(A)). (A2.3) 

In other words, for any low energy metastable state, the relative polarisation 2-NSN,1 
is for small A, either close to zero or to one. 
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Before proving the statement we need a little technical lemma, which is useful for 
getting sharp bounds. 

Lemma 3. Consider a spin configuration generated by the rule of lemma 1, (all 
antiferromagnetic bonds). The energy change associated with the polarisation of one 
more spin pair 

N - l  

I = l  
A €  = 2  S/2-IA + 2  

obeys the bound 

2-AN -2-N-A+l 2 - A  -2-NA 
+ 21-A - 1 S . 1  + 1)  1 -2-A 

(A2.4) 

(A2.5) 

where, for each 1, SI is the polarisation of the block which is a neighbour to the block 
containing the spin pair which is to be polarised. 

Proof: It follows from lemma 1 that 

(A2.6) 

Equation (A2.5) now follows by taking 1 + n = N and by summing a geometric series. 

We now proceed with the proof of lemma 2. 

Proof: The energy change associated with the polarisation of a spin pair in the rightmost 
quarter of the system is 

Using lemma 3 and the inequalities SN-2,3 3 $N-1,2 and SN-2,4< $N-1,2 we get the 
bound 

(A2.8) 

The condition A <+ ensures that (2A - 1)/(21-A - 1 )  < 1 ,  which is necessary to make the 
term in the inner parentheses negative, since as previously noted for any ground-state 
configuration SN-I,l s SN-1,2. By rearranging the terms we find that the energy change 
is negative for 

(A2.9) 

Moreover Sg-l,z > 0 requires 

S N - l , I >  C(A )2A (A2.10) 

which is the first condition on SN-l, l .  
Clearly, as long as (A2.9) and (A2.10) are satisfied, the energy can be lowered by 

increasing the polarisation of the right block. This process must stop when the critical 
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value Sf-1.2 is reached. At this point we break a bond in the left block, at an  energy 
cost 

(A2.11) 

which by lemma 3 is bounded by 
1 +2-A -2-(N-l)A+l 2-A(,V-1)-2-N+Z-A 

AElS2  + 21-A - 1 S N - I J  - 

We now require that AE, be negative, and by rearranging the terms we find: 

S,v-l,I < (2'-.* - l)(S'E-l,2- C(A)). (A2.13) 

Inserting (A2.9) into (A2.13) finally yields 

(A2.14) 

which is, together with equation (A2.10) equivalent to (A1.5). The factor in parentheses 
is less than unity for A < 0.1 and in general of order one. If (A1.5) is satisfied, the energy 
can be further lowered by polarising the left block further. This in turn allows Sv-1,2 
to increase, which again means that S,V-l,l can increase even more. The game comes 
to an  end when S z - 1 , 2 = 2 N - 1  and SN- l , l  obeys (A2.13). The lemma is thus proved. 
Next we check that the ground state has a high relative polarisation 2-NSN,1. 

Lemma 4. If S.v-l,l is of the order of 2-""-" then the system is not in its ground state. 

ProoJ: The lemma follows from a comparison with the energy of the completely 
polarised state, which is O(2 vY-12"-2"-A' ), and negative for small A, as shown by a 
simple calculation. If S,,,, is 0(2-""-" ) then SN-l,2 is of the same order, according 
to (A2.9) and so the energy is of order 2-3A(N-" which is much higher than in the 
completely polarised state. 

In conclusion we have proved that the ground state of the system is very close to 
being completely polarised, i.e. 

For any A # 0, C(A) is completely negligible compared to 2N-1  in the limit N + CO, and 
when A is close to zero 2'-* - 1 is close to one. 

The last issue we shall discuss is the effect on the Parisi function of the  approximation 
we have done by postulating a complete polarisation of the block. The overlap is not 
i l ,  but rather i( 1 - A )  where A = 2( 1 - SN,12-N), i.e. we get a little shift in the position 
of the S peaks. Since physical quantities are integrals over the overlap density, the 
error will be negligible provided that the quantity we are interested in changes smoothly 
in a little region close to one. This is clearly the case for all the moments of the Parisi 
function. 

As the last part of this appendix, we present now the proof of lemma I .  

Proof: We note first that according to the prescription the overall polarisation cannot 
arise as the difference between two contributions of oppositely oriented blocks. Such 
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configurations have indeed higher energy than the ground state, as shown by the 
following simple argument. If S , ,  = SN-,,l - /SN-1,21,  the numerical value of both 
SN-,,l and SN-I,2 can be decreased by two units without changing SN,l. The ensuing 
energy change is 

(A2.15) 

where the notation Sf' and S: is analogous to the one used in lemma 3. The superscripts 
R and L refers to the right and left sub-blocks, and all the quantities can be taken as 
positive. Since 

(A2.16) 

and a similar equation holds for the Sf' we find 

AE -2(SN,1 -2) (2-A~NN-2)-2-A(N-' )  ) S O  (A2.17) 

which rules out the possibility of such a configuration arising. As a consequ.ence S , ,  
is a sum of positive contributions from broken antiferromagnetic bonds. Now let S(  p )  
be the statement that the lemma is true for SN,,  S p .  S(4) can be checked by direct 
computation. We now prove the implication S (  p )  + S (  p + 2), completing the proof 
by induction. 

If S ( p )  is assumed, a polarisation SN,, = p + 2  has been built according to the 
lemma. We now add the next two units of polarisation in such a way that the energy 
gain AE is minimised. This gives the minimum energy of the new configuration. There 
are two possible cases according to whether ( p + 2 ) / 2  is (i)  even or (ii) odd. In both 
cases the alternative is whether to place the next polarised pair within S N - , , ,  or SN-',*. 
All the subsequent choices, i.e. within the main sub-blocks, are by the induction 
hypothesis, determined by the rule. 

(i)  In this case SN- , , ,  = SN-l,2 = ( p + 2 ) / 2 .  The first choice cannot therefore 
influence AE, which proves S (  p + 2). 

(i i)  Here we have SN- , , ,  = (p+2j /2+ 1 and SN-l,2 = ( p + 2 ) / 2 -  1 (or vice versa). 
We can either increase (violating the rule) or S N - , , *  (complying to it). Let AET 
and AER be the energy change in the two cases. We now prove that AET> AER. Let 
S",] = SN-l,l,  S>-l = SN-l,2 and SF (ST) be the sub-block of S N - 1 , 2  ( S N - , , l )  which, 
for each 1, is closest to the block in which the last bond has been broken, Then 

N-1 

AET-AER=2 1 (S:-Sp)2-Af. 
f = O  

(A2.18) 

In order to show that the right-hand side of (A2.18) is always positive we make the 
following remarks. 

and 
N - 2  

s : -sp=2.  
f = O  

(A2.19) 
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(2) All the terms in (A2.18) are either zero or two, i.e. they are all zero except one, 
say ST - St = 2, for q s N - 2. This can be shown by the following simple argument. 
Suppose for concreteness that s L - ~  = s ~ - ~ , ~  and s ” , ~  = SN-2,3. Then either sL2 = 

from the fact that no two blocks differ by more than two units, and that SN-l,, = SN-1,2+ 
2.) Since now SL-3 and S”,_, are sub-blocks of SN-2.2 and SN-2,4 respectively, in the 
first case we have proved our statement for q = N - 2, while in the second we have 
postponed the problem to a lower level. Clearly, due to (A2.18), this second case cannot 
happen for all levels, which completes the argument. 

T s k - 2 + 2  and S N - * , ~ =  SN-Z,~  or S N - ~ =  sk-2 and S ~ - 2 , 2 =  S ~ - 2 , 4 + 2 .  (This fOllOWS 

Returning now to equation (A2.17) we can rewrite it as 

c \ E ~ - c \ E ~  = 2[-2(2)-h(N-1) + 2(2)-*4] > 0 (A2.20) 

which completes the proof. 
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